			Analytical	RESULTS						
		~ % calcd				% found				
Complex	С	н	N	м	С	н	N	м		
$Ni(4-MeT)_2Br_2$ (blue)	23.0	2.40	6.72	14.1	22.7	2.40	6.52	14.1		
$Ni(4-MeT)_2Br_2$ (yellow)				14.1				14.0		
$Ni(4-MeT)_2I_2$	18.8	1.96	5.48	11.5	18.5	2.06	5.49	11.4		
$Ni(4-MeT)_3(NO_3)_2$	30.0	3.15	14.6	12.2	29.9	3.16	14.5	12.1		
$Ni(4-MeT)Br_2$				18.5				18.6		
$Cu(4-MeT)_2Cl_2$	28.9	3.01	8.42	19.1	28.8	3.13	8.29	19.2		
$Cu(4-MeT)_2Br_2$	22.8	2.37	6.64	15.1	22.6	2.40	6.62	14.8		
$Cu(4-MeT)_2(NO_3)_2$	24.9	2.59	14.5	16.5	24.6	2.60	14.5	16.5		
Cu(4-Me)Cl ₂	20.5	2.17	5.99	27.2	20.7	2.14	6.14	27.0		
$Co(4-MeT)_2(NCS)_2$	32.2	2.68	14.7	15.8	31.9	2.63	14.7	15.6		
$Co(4-MeT)_2Cl_2$	29.3	3.05	8.54	18.0	29.4	3.12	8.69	18.0		
$Co(4-MeT)_2Br_2$	23.0	2.40	6.72	14.1	22.8	2.41	6.66	14.0		
$Co(4-MeT)_2I_2$	18.8	1.96	5.48	11.5	18.6	2.02	5.42	11.6		
$Pd(4-MeT)_2Cl_2$	25.6	2.66	7.45		25.5	2.41	7.24			
$Zn(4-MeT)_4(ClO_4)_2$	29.0	3.03	8.47	9.90	29.1	3.01	8.39	9.81		

TABLE III

complex $Co(4-MeT)_2(NCS)_2$ has N-bonded thiocyanate $(\nu_{C=N} \text{ at } 2027, 2037 \text{ cm}^{-1}, \delta_{NCS} \text{ at } 476 \text{ cm}^{-1})$ and has a tetrahedral stereochemistry as confirmed by the intensities and band positions in the electronic spectrum. We have listed the electronic spectra of a number of other cobalt(II) complexes as we appear to have achieved better resolution of the near-infrared band. The isothiocyanate complex has only slight splitting of this band, reflecting the closer approximation of this species to tetrahedral symmetry. We have also prepared tetrahedral $[Zn(4-MeT)_4](ClO_4)_2$, which is a 1:2 electrolyte in nitromethane ($\Lambda = 187$; 10⁻³ M solution), while the infrared spectrum shows no indication of perchlorate coordination. In diamagnetic squareplanar $Pd(4-MeT)_2Cl_2$ the ligand still appears to be N bonded rather than S bonded and we assign bands in the far-infrared spectrum to ν_{Pd-N} and ν_{Pd-Cl} . The far-infrared spectrum indicates a trans structure, there being only one ν_{Pd-C1} band.

Experimental Section

4-Methylthiazole was supplied by Koch-Light Laboratories. All other materials were AnalaR or the best grade available. Analytical results for the complexes are presented in Table III. The complexes were prepared as follows.

 $Cu(4-MeT)_2Cl_2$.—A 0.99-g sample of ligand (0.01 mol) was added to 0.42 g of $CuCl_2 \cdot 2H_2O$ (0.0025 mol) dissolved in the minimum volume of ethanol. Precipitation of the complex occurred. The product was filtered off and washed with ethanol and ether.

The following complexes were also made by this method; in all cases 0.0025 mol of metal salt and 0.01 mol of ligand were used: $Cu(4-MeT)_2Br_2$ (using anhydrous $CuBr_2$), $Cu(4-MeT)_2(NO_3)_2$ (from $Cu(NO_3)_2 \cdot 3H_2O$), yellow $Ni(4-MeT)_2Br_2$ (from $NiBr_2 \cdot 3H_2O$), and $Co(4-Me)T_2Cl_2$ and $Co(4-MeT)_2Br_2$ (from $CoCl_2 \cdot 6H_2O$ and anhydrous $CoBr_2$, respectively). Blue $Ni(4-MeT)_2Br_2$ was prepared using methanol as the solvent.

The best preparative method for $Ni(4-MeT)_{3}(NO_{3})_{2}$ appears to be that quoted by Hambright, *et al.*¹

 $Ni(4-MeT)_2I_2$.—This was prepared by dissolving 0.005 mol of NiI₂ in the minimum volume of 50:50 1-butanol-ethanol, slowly adding 0.02 mol of ligand, and refluxing for 1 hr. On standing, crystals formed and were filtered off and washed with ethanol and petroleum ether (bp 30-40°). These were very hygroscopic.

 $Co(4-MeT)_{S}(NCS)_{2}$.—A 0.005-mol sample of $Co(NCS)_{2}$ was dissolved in the minimum volume of acetone and 0.03 mol of ligand was added. The solution was boiled and evaporated to a small bulk, cooled, and filtered. The product was washed with

acetone and light petroleum ether. $Co(4-MeT)_2I_2$ was obtained by adding 0.02 mol of ligand to 0.005 mol of $CoI_2 \cdot 2H_2O$ in acetone and washing the precipitated product with ethanol and petroleum ether. The complexes $Co(4-MeT)_2(NO_3)_2$ and $[Zn(4-MeT)_4](ClO_4)_2$ were both prepared by refluxing ethanol-2',2''dimethoxypropane solutions of the metal salt hexahydrates (0.005 mol) with excess ligand (0.03 mol) for 30 min and then allowing them to stand. The products were filtered off and washed with ethanol and ether.

Both $Cu(4-MeT)Cl_2$ and $Ni(4-MeT)Br_2$ were obtained by heating the corresponding 1:2 complex at 140° *in vacuo* to constant weight. Correct weight losses were observed. The complex $Pd(4-MeT)_2Cl_2$ was prepared by dissolving 0.005 mol of bis(benzonitrile)palladium(II) chloride in the minimum volume of benzene, adding 0.01 mol of 4-methylthiazole. The precipitated complex was washed with benzene.

Instrumentation was as described in earlier papers.^{2,8} The diamagnetic correction for 4-methylthiazole was obtained from the literature.⁹

(9) E. J. Vincent, R. Phan-Tan-Luu, J. Metzger, and J. M. Surzur, C. R. Acad. Sci., 6345 (1965).

Contribution from the Department of Chemistry, University of Western Ontario, London, Canada

1:1 Adducts of Tetracyanoethylene with Methylplatinum(II) Complexes

By H. C. Clark* and R. J. Puddephatt

Received July 16, 1970

The unique properties of tetracyanoethylene, TCNE, due to the highly electronegative cyano-group substituents of the olefin have prompted much recent interest in its complexes with transition metals.¹

We have found that TCNE forms stable 1:1 adducts with *trans*-PtXCH₃L₂ (L = tertiary phosphine or arsine, X = halogen). The complexes isolated are given in Table I. They melt sharply with blackening and effervescence in the range 150–190° and are generally insoluble in common organic solvents. The structure (I)

^{*} To whom correspondence should be addressed.

⁽¹⁾ W. H. Baddley, Inorg. Chim. Acta Rev., 7 (1968).

	TABLE I	
Analytical Data and	Physical Properties of Complexes	$PtXCH_{3}L_{2}\cdot TCNE$
		,

				————Anal	ysis, %				
Cor	npd	(C	Calad	Equal	Calad	-N	Yield,	Mr. 90
A D		Caled	FOUND	Calcu	Found		Found	% 70	100 10° 1
CI P($(CH_3)_3$	29.7	30.0	4.0	4.2	10.7	11.2	73	183-185 dec
	$(CH_3)_2C_6H_5$	42.8	43.3	3.9	4.0	8.6	8.4	93	185 dec
I Pe	$(CH_3)_2C_6H_5$	37.3	37.3	3.4	3.3	7.6	7.7	85	150–154 dec
Cl A	s(CH ₃) ₃	25.4	25.3	3.45	3.6	9.1	9.3	86	174–175 dec
I As	$s(CH_3)_3$	22.1	23.3	3.0	2.9	7.9	7.6	91	157–158 dec
Cl As	$s(CH_8)_2C_6H_\delta$	37.4	37.75	3.4	3.5	7.6	7.2	92	188–190 dec
				TABL	вII				
		INFRARE	D (2500-140 C CHable TCN	M^{-1}) and R . E(I) and P	аман (700-70 •ХСН:[V(СН) см ⁻¹) ; Б.).] Т(SPECTRA OF		
	·T			$\mathbf{D} (\mathbf{I}) \mathbf{A} (\mathbf{D}) \mathbf{I}$	U	X = C1	$V = A_{\rm R}$	T (Y _	$\mathbf{I} \mathbf{V} = \mathbf{A} \mathbf{c}$
Assignment		R	$-\Pi (x = 0)$	$\sum_{i, x} = r_{i}$,Ir	$\mathbf{A} = \mathbf{C}\mathbf{I}, \mathbf{I}$	r = As	(X =	R = 1, x = As/
-(CN)	0020 0		 2220 c		99 20 e			0020	
V(CIN)	2220 S		2200 5		2200 5			2202 8	
NOU V	2100 w		1495 0		1417 0		1414	1417 .	
OB(CH3Y)	1420 S		1420 5		1417 2		1376 vw	1417 5	
$\delta_{s}(CH_{3}Y)$	1299 s		1299 s		1263 s		1271 vw	1270 w	
			1265 ms					1247 s	
$\nu(C=C)$	1191 s		1201 ms		1213 ms	s	1208 ms	1206 ms	
o(CH ₃ Y)	965 sh		959 vs	a	918 vs	;	915 w	916 vs	
F \U -)	949 vs		940 sh		906 s.	sh	899 w	898 vs	
	0-0-10		869 ms		,				
	859 ms		858 sh		84 2 ms	s		836 mi	
$v(VC_{2})$	746 s		760 s		635 s		630 ms	622 ms	630 m
	731 sh		731 m						
	682 s	683 m	681 s		601 s		593 s	593 m	598 ms
	002 5	000 111	677 sh	676 s	0010		000 0	000 m	000 1110
(CC)	665 ms	662 ms		644 ms	684 m		676 s	677 m	670 ms
	000 1115	639 s		605 m	001 111		651 m	011 111	651 m
"(P+CH_)		000 5		537 s			558 m		526 s
$\mathbf{P}(\mathbf{P} + \mathbf{V})$	373 me	370 mw	365 m	358 m			000 m	977 m	020 3
V (I (I)	010 1113	010 111	340 sh	000 m			260 m	265 sh	969 w
(P+	250	252	040 31	919 mg			200 m 205 m	200 511	202 w
$\nu(P + - Y)$, 502 w	000 43	0 80 e	280 mg	286 .1		020 vs		010.5
$\nu(\Gamma t - \Lambda)$			2095	209 1115	280 si		200 511		141 0
NACI	074 m	077	200 8		200 S		910 m	914 m	141 8
$O(Y C_3)$	274 111	277 III 502 m			210 m	w	219 m	214 11	221 W
Other bands	101	093 W	400					100	
	491 mw	491 W	488 mw		040		441	480 mw	004
	007		434 W		348 m		441 W	333 mw	334 W
	235 m		234 W		240 w		100	100	100
	196 m	1.40	211 w		193 m	W	192 m	188 w	192 ms
		143 ms					150 ms		
		131 m		ć n			118 w		
		96 w		98 s			82 m		91 m

of the complexes may be deduced from the nmr, infrared, and Raman spectra.

Only complexes I with X = Cl and $L = P(CH_8)_3$ or As $(CH_8)_3$ were sufficiently soluble in perdeuterioacetone to give satisfactory nmr spectra. The methylphosphine protons in I (X = Cl, $L = P(CH_3)_3$) give a doublet in the nmr spectrum due to coupling with ³¹P with satellites due to coupling with ¹⁹⁶Pt (I = 1/2, natural abundance 34%), confirming that the phosphine ligands are mutually cis.² The platinum-bound methyl group gives a triplet due to coupling with two identical ³¹P nuclei, again with satellites due to coupling with ¹⁹⁵Pt. These data are only consistent with the structure I for the complexes. Hexafluorobut-2-yne^{3,4} and tetrafluoroethylene⁴ adducts of *trans*-PtClCH₃L₂ as well as the complex PtHCN[P(C₂H₅)₃]₂ TCNE¹ are believed to have similar structures. The tetracyanoethylene complexes are undissociated in solution and hence are more stable than the corresponding hexafluorobut-2-yne or tetrafluoroethylene complexes which decompose to the constituents on dissolution.⁴ This greater stability probably reflects the greater ability of TCNE to oxidize the central metal.⁵ In this regard, the coupling constant data derived from the nmr spectra are interesting. The coupling constants for I are close to the values ex-

(2) J. D. Ruddick and B. L. Shaw, J. Chem. Soc. A, 2801 (1969).

⁽³⁾ H. C. Clark and R. J. Puddephatt, Chem. Commun., 92 (1970).

⁽⁴⁾ H. C. Clark and R. J. Puddephatt, Inorg. Chem., 9, 2670 (1970).

⁽⁵⁾ L. Vaska, Accounts Chem. Res., 1, 335 (1968).

	I (Y	= P)	II (Y = P)		I (Y	= As)	\longrightarrow II (Y = As)- \longrightarrow		
Assignment	Ir	R	Ir	R	Ir	R	Ir	R	
$\delta_{s}(\mathrm{CH_{3}Y})$	1291 mw		1285 s		1273 w		1276 w		
	1281 s		1265 sh		1254 s		1261 ms		
							1255 sh		
$\delta_{s}(CH_{3}Pt)$	1204 vw		1234 m		1216 m		1235 ms		
	1185 m				1193 ms				
$\rho(CH_3Y)$	944 vs		950 vs		901 vs		920 sh		
							905 vs		
	866 sh		864 s		825 ms		838 ms		
	853 ms						828 sh		
$\nu(YC_3)$	723 s	726 ms	746 s		605 s	605 s	626 s	622 vs	
			730 sh						
	674 ms	681 s	684 ms		592 s	596 vs	600 s	603 vs	
$\nu(PtC)$	525 ms	528 vs	570 m	563 vs	542 ms	540 s	566 m	564 m	
	513 s	516 s			532 ms	531 m			
$\nu(PtT)$	381 sh	380 w		375 m	$273 \mathrm{sh}$			270 ms	
	360 s	356 mw	353 m		267 s	268 m	271 sh		
$\nu(PtC1)$			267 vs	265 s			277 vs	278 sh	
$\delta(\mathrm{YC}_3)$	2 8 2 m	279 mw	279 w, sh	286 m		224 mw		222 m	
δ(PtC)	2 3 6 w		238 w		2 3 2 w			239 sh	
$\delta(\mathrm{PtY}_2)$	217 sh	219 ms	215 m	214 vs					
Other bands		199 sh	188 w	192 m	193 w	197 sh	189 ms	185 s	
		12 8 m		167 m		185 ms	174 m	124 ms	
				133 s		109 m		$75 \mathrm{m}$	
						87 ms			

TABLE III INFRARED (1300-140 cm⁻¹) AND RAMAN (700-70 cm⁻¹) SPECTRA OF cis-Pt(CH₃)₂[Y(CH₃)₃]₂ (I) AND trans-PtClCH₃[Y(CH₃)₃]₂ (II)

pected for platinum(IV) complexes,^{2,6} while the data for Pt[P(CH₃)₃]₂.TCNE resemble those for platinum(II) complexes of the type *cis*-PtX₂[P(CH₃)₃]₂.⁷ Quite different behavior would be expected for a trigonal platinum-(0) complex.⁸ Thus, in the valence bond formalism the complexes may be better described by Ib rather than Ia.

The infrared and Raman spectra of the TCNE complexes are given in Table II, and those of the parent methylplatinum (II) complexes, which are included to aid in the assignment of bands,^{4,9} are in Table III. The spectra confirm the presence of methyl-platinum and platinum-halogen bonds in the complexes. Some information about the nature of the platinum-TCNE bond may also be obtained from the spectra. Thus as back-bonding of electrons from d orbitals of platinum into antibonding orbitals of TCNE increases (or as the bonding approaches the limiting case Ib), the C=C and C=N bonds in TCNE are expected to become weaker while the platinum-TCNE bond should become stronger.¹ For $Pt[P(CH_3)_3]_2 \cdot TCNE$ the relevant stretching frequencies are $\nu(CN)$ 2220, 2165 cm⁻¹, ν (C=C) 1191 cm⁻¹, and ν (Pt-TCNE) 353 cm⁻¹ while for I (X = Cl, L = $P(CH_3)_3$) the corresponding values

(7) D. A. Duddell, J. G. Evans, P. L. Goggin, R. J. Goodfellow, A. J.

are ν (CN) 2230 cm⁻¹, ν (C=C) 1201 cm⁻¹, and ν (Pt-TCNE) 313 cm⁻¹; these values indicate a greater degree of back-bonding in the former complex, as would be predicted.

The reaction of TCNE with platinum hydrides gives elimination, perhaps by the mechanism shown in Scheme I.

This is a slight modification of the mechanism proposed by Baddley.¹ We consider it more likely since it is the reverse of the mechanism proposed for oxidative additions¹⁰ and is thus favored by the principle of microscopic reversibility. This subsequent elimination reaction does not occur with the methylplatinum compounds, presumably because the methyl-platinum bond is stronger than the platinum-hydrogen bond.

Experimental Section

General methods and details of the far-infrared and Raman spectrometers have been published previously.⁴ trans-PtICH₃-[As(CH₃)₃]₂ was prepared by reaction of trans-PtClCH₃[As-(CH₃)₃]₂ with sodium iodide in acetone solution; yield 70%; mp 156-157° (methanol); ν (PtC) 548 cm⁻¹. Nmr in CHCl₃: δ (CH₃Pt) -0.71 ppm, ²J(PtH) = 77.0 Hz; δ (CH₃As) -1.63 ppm, ³J(PtH) = 20.6 Hz.

 $PtClCH_3[P(CH_3)_3]_2 \cdot C_2(CN)_4$ was prepared by addition of C_2 -(CN)₄ (0.020 g, 0.145 mmol) in benzene (2 ml) to a stirred solution of *trans*-PtClCH₃[P(CH₃)₃]₂ (0.062 g, 0.160 mmol) in

⁽⁶⁾ H. C. Clark and J. D. Ruddick, Inorg. Chem., 9, 2556 (1970).

⁽⁸⁾ H. C. Clark and K. Itoh, unpublished results.

⁽⁹⁾ D. A. Long and W. O. George, Spectrochim. Acta, 19, 1717 (1963).

⁽¹⁰⁾ P. B. Chock and J. Halpern, J. Amer. Chem. Soc., 88, 3511 (1966).

benzene (2 ml). The precipitate was filtered off, washed thoroughly with benzene and pentane, and dried under vacuum giving the product as pale yellow microcrystals (0.068 g). Nmr in (CD₃)₂CO: δ (CH₃P) -1.95 ppm (doublet + satellites), ²J + ⁴J(PH) = 12.2 Hz, ³J(PtH) = 24 Hz; δ (CH₃Pt) -0.77 ppm (triplet + satellites), ³J(PH) = 4.6 Hz, ²J(PtH) = 60 Hz.

Other complexes were prepared similarly. Analytical data, yields, and melting points are in Table I. Nmr spectrum of PtClCH₃[As(CH₃)₃]₂·C₂(CN)₄ in (CD₃)₂CO: (CH₃As) -1.86 ppm, ${}^{8}J$ (PtH) = 17.4 Hz; δ (CH₃Pt) -0.79 ppm, ${}^{2}J$ (PtH) = 62.0 Hz.

 $Pt[P(CH_3)_3]_2 \cdot C_2(CN)_4$ was prepared by the method of Baddley;¹ mp 195-215° dec. Nmr in CH₂Cl₂: δ (CH₃P) -1.75 ppm, ${}^2J + {}^4J(PH) = 10.6$ Hz, ${}^3J(PtH) = 35.4$ Hz.

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, THE UNIVERSITY, SHEFFIELD S3 7HF, UNITED KINGDOM

The Reaction of Pentaborane(9) with Alkali Metal Hydroborates

By C. G. Savory and M. G. H. Walleridge*

Received July 31, 1970

Several investigations have shown that both *nido*and *closo*-borane anions are obtained by the action of a hydridic species on a neutral boron hydride. The anions formed are dependent upon the conditions used, and frequently several products are produced. Thus, diborane(6) and tetraborane(10) react with the hydroborate ion in ethereal solvents at 25 and -45° , respectively, yielding the octahydrotriborate(1-) ion,¹⁻⁵ but at higher temperatures (*e.g.*, 100°) the *nido*-B₁₁H₁₄⁻ and *closo*-B₁₂H₁₂²⁻ ions are the ultimate products.^{2.3} In

$$B_{3}H_{8}^{-} + H_{2}$$

$$B_{2}H_{6} + BH_{4}^{-}$$

$$B_{11}H_{14}^{-} + B_{12}H_{12}^{2-} + H_{2}, \text{ etc.}$$

general all the boron hydrides from B_2H_6 to $B_{18}H_{22}$ react similarly to yield borane anions³ although with the more stable higher hydrides proton abstraction (*via* the initial addition of a hydride ion⁶) may occur, as in the case of decaborane(14)⁷⁻⁹

$$\mathbf{B}_{10}\mathbf{H}_{14} + \mathbf{B}\mathbf{H}_{4}^{-} \xrightarrow{\mathbf{25}^{\circ}} \mathbf{B}_{10}\mathbf{H}_{15}^{-} \longrightarrow \mathbf{B}_{10}\mathbf{H}_{13}^{-} + \mathbf{H}_{2}$$

The products of the reaction of pentaborane(9) with sodium hydroborate are sharply dependent upon the reaction temperature in that at 40° the $B_8H_8^-$ ion

(1) D. F. Gaines, R. Schaeffer, and F. Tebbe, Inorg. Chem., 2, 526 (1963).

(8) W. V. Hough and L. J. Edwards, Advan. Chem. Ser., No. 32, 192 (1961).

(9) V. D. Aftandilian, H. C. Miller, G. W. Parshall, and E. L. Muetterties, Inorg. Chem., 1, 734 (1962). is formed and at 60° some $B_{11}H_{14}^{-1}$ ions may be detected, while at 100° the $B_3H_8^{-1}$, $B_{11}H_{14}^{-1}$, and $B_{12}H_{12}^{2-1}$ ions occur among the reaction products.³ Other studies have shown that with the hydride ion and lithium alkyls at -78° the $B_5H_8^{-1}$ ion is probably involved as an intermediate although the final reaction products have yet to be elucidated.¹⁰⁻¹² We have investigated the reaction of pentaborane(9) with lithium (and so-dium) hydroborate at low temperatures (*i.e.*, up to 25°) to determine the nature of the initial products in an attempt to define more closely the important intermediates involved in the formation of the higher borane anions.

Experimental Section

Lithium hydroborate and deuterioborate were purified by Soxhlet extractions using dry ethyl ether, sodium hydroborate was recrystallized from diglyme, and pentaborane(9) was distilled *in vacuo*. Monoglyme and diglyme were dried by distillation from lithium aluminum hydride and stored over molecular sieve 4A.

Infrared spectra were recorded using a Perkin-Elmer 457 grating Infracord, and the ¹¹B nmr spectra were recorded using a Varian HA-100 instrument operating at 32.1 MHz. Mass spectra were obtained from an AEI MS9 spectrometer with a source temperature of $50-60^{\circ}$ and an ionizing voltage of 70 eV.

Reaction of Pentaborane(9) with Lithium Hydroborate.---Initial experiments were carried out to determine the stoichiometry of the reaction. Thus when pentaborane(9) (0.258 g, 4.0 mol) was condensed onto lithium hydroborate (0.0774 g, 3.52 mmol) in monoglyme (or diglyme) under vacuum and the reaction mixture was allowed to warm slowly from -196° to room temperature, some pentaborane(9) (0.022 g, 0.34 mmol) was recovered from the reaction flask by distillation giving a molar ratio of reactants as $B_{5}H_{9}$:LiBH₄ = 1.04. Separate control experiments established that about half of the monoglyme had to be removed to recover all the volatile component, viz., $B_{\delta}H_{\vartheta}$. A typical procedure was as follows. Pentaborane(9) (0.743 g, 11.6 mmol) was distilled onto a solution of lithium hydroborate (0.257 g, 11.6 mmol) in monoglyme (20 ml) at -196° under vacuum. The mixture was warmed to -78° and stirred for 4 hr over which time no hydrogen was evolved. Further stirring over 36 hr at 25° led to the evolution of hydrogen (161 ml, 7.2 mmol) together with small amounts of diborane (0.040 g, 1.4 mmol) and pentaborane(9) (0.073 g, 1.16 mmol). The pentaborane(9) appeared to be liberated during the course of the reaction because none could be recovered in the early stages of the reaction. Although hydrogen was still being evolved after 36 hr, the rate of evolution was extremely slow, and after a further 50 hr only another 4 ml (0.18 mmol) had been recovered. The diborane and pentaborane(9) were separated by vacuum distillation and identified from their ir and mass spectra. Treatment of an aliquot of the residual solution with aqueous tetramethylammonium hydroxide (~ 20 ml) yielded a white solid precipitate (0.42 g) which was shown to be $(CH_3)_4NB_9H_{14}$. The solid was analyzed by combustion at 800° in an oxygen stream. Anal. Calcd for $C_4H_{26}NB_9$: C, 25.95; H, 14.15; N, 7.54. Found: C, 26.47; H, 15.06; N, 7.16. A further aliquot of the above solution was treated with 1,4-dioxane to precipitate an oil which changed slowly to a solid on shaking. The ¹¹B nmr spectrum of the solid (in diglyme) was consistent with its being predominantly $LiB_{9}H_{14}$ ·diox. Concentration of the filtrate precipitated another solid consisting mainly of LiB₃H₈ · diox (identified from the ¹¹B nmr spectrum). On redissolving this solid in monoglyme and treating the solution with aqueous tetramethylammonium

1465 (1967).

^{*} To whom correspondence should be addressed.

⁽²⁾ H. C. Miller, N. E. Miller, and E. L. Muetterties, J. Amer. Chem. Soc., **85**, 3885 (1963).
(3) H. C. Miller, N. E. Miller, and E. L. Muetterties, Inorg. Chem., **3**,

⁽³⁾ H. C. Miller, N. E. Miller, and E. L. Muetterties, Inorg. Chem., 3, 1457 (1964).

⁽⁴⁾ R. W. Parry, R. W. Rudolph, and D. F. Shriver, *ibid.*, 3, 1479 (1964).
(5) W. V. Hough and L. J. Edwards, *Advan. Chem. Ser.*, No. 32, 190 (1961).

⁽⁶⁾ R. Schaeffer and F. Tebbe, Inorg. Chem., 3, 1638 (1964).

⁽⁷⁾ G. W. Schaeffer, unpublished results; see ref 6.

⁽¹⁰⁾ D. F. Gaines and T. V. Iorns, J. Amer. Chem. Soc., 89, 3375 (1967).

⁽¹¹⁾ T. Onak, G. B. Dunks, I. W. Searcy, and J. Spielman, Inorg. Chem., 6,

⁽¹²⁾ H. D. Johnson, R. A. Geanangel, and S. G. Shore, *ibid.*, 9, 908 (1970).